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Abstract
The variational and fractional-dimensional space approaches are used in a
thorough study of the virial theorem value and scaling of the shallow-donor
binding energies versus donor Bohr radius in GaAs/(Ga,Al)As semiconductor
quantum wells (QWs) and quantum-well wires (QWWs). In the case of
the fractional-dimensional space approach, in which the three-dimensional
actual anisotropic semiconductor heterostructure is modelled by a fractional-
dimensional isotropic effective medium, we have shown that if the ground-state
wave function may be approximated by a D-dimensional hydrogenic wave
function, the virial theorem value equals 2 and the scaling rule for the donor
binding energy versus Bohr radius is hyperbolic, both for GaAs/(Ga,Al)As
wells and wires. In contrast, calculations within the variational scheme show
that the scaling of the donor binding energies with quantum-sized Bohr radius
is in general nonhyperbolic and that the virial theorem value is nonconstant.
Moreover, calculations for the donor binding energies versus well widths or wire
radii, within both the fractional-dimensional and the variational approaches,
indicate that any general conclusion based on a given virial theorem value or
donor energy versus Bohr radius scaling rule should be examined with caution.

1. Introduction

In the past two decades, there has been considerable interest in the study of the physics
underlying various properties of low-dimensional semiconductor systems, due to their
importance for potential applications in electronic and optoelectronic devices [1]. In particular,
impurity and exciton states may be significantly modified by the barrier-potential confinement
in quantum-sized semiconductor heterostructures,and much experimental and theoretical work
has been devoted to the quantitative understanding of their properties in GaAs/Ga1−xAlxAs
quantum wells (QWs), quantum-well wires (QWWs), quantum dots (QDs) and semiconductor
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heterostructures in general. Various approaches have been used to calculate the binding
energies of Coulomb-bound states in quantum-sized low-dimensional heterostructures and, in
this work, we are going to focus on both the variational procedure [2–11] and the fractional-
dimensional space approach [12–18].

Recently, the scaling of the exciton binding energy in semiconductor QWs and QWWs
was numerically investigated by Rossi et al [19], who found that in the strong confinement
limit the same potential-to-kinetic energy ratio (virial theorem value) holds for quite different
wire cross sections and compositions, and claimed that a universal parameter would govern
the scaling of the exciton binding energy with size. These findings were attributed to the
existence of a constant (shape- and/or size-independent) virial theorem value, respectively,
for wires and wells, and that its value was larger for wires (=4) than for wells (=2). Zhang
and Mascarenhas [20] re-examined the subject by calculating the exciton binding energies and
the corresponding virial theorem value in QWs and QWWs with infinite confinement barriers,
and found that a shape-independent scaling rule does exist for QWWs, but argued that a virial
theorem value being a constant or not is irrelevant. In particular, Zhang and Mascarenhas [20]
found that the virial theorem value is not a constant for either wires or wells.

The purpose of this paper is to study, in the case of shallow donors, the scaling rule, if any,
for the donor binding energies versus Bohr radius, and to investigate the virial theorem for
shallow donors in quantum-sized semiconductor heterostructures, such as GaAs/Ga1−xAlxAs
cylindrical quantum wires or wells, both within the fractional-dimensional and variational
approaches. The paper is organized as follows. In section 2 the theoretical basis of the study
is summarized; results and discussion are given in section 3 and conclusions in section 4.

2. Theoretical framework

We consider the problem of a shallow donor at the position ri in a semiconductor GaAs/
Ga1−xAlxAs heterostructure such as a QW or a cylindrical QWW, within the effective-mass
and non-degenerate-parabolic band approximations, and with the Hamiltonian

H = p2

2m∗ − e2

ε |r − ri | + Vb(r) (2.1)

where m* is the conduction-band effective mass and ε is the dielectric constant, which, for
simplicity, are taken as the GaAs bulk values throughout the heterostructure3. Vb(r) is the
confining potential, which is taken as Vb(r) = Vb(z) for QWs or Vb(r) = Vb(ρ) for cylindrical
QWWs. In the following sections we will limit ourselves to donors located at positions where
cylindrical symmetry is preserved, i.e., at any position in QWs or at the wire axis in QWWs,
and will focus on the impurity 1s-like ground state. The eigenfunctions of (2.1) may be taken
as

ψE(r) = f (r)φE(r) (2.2)

where f (r) is the ground-state solution of (2.1) in the absence of the Coulomb interaction.
In the fractional-dimensional approach, one writes the Schrödinger equation [12–18]
corresponding to (2.1) as

[HD +W ]φE(r) = EφE(r) (2.3)

HD = − h̄2

2m∗ ∇2
D − e2

εr
(2.4)

3 The roles of r-dependence and mismatch of the dielectric constant are properly discussed in [6] and [7], respectively.
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where HD is the D fractional-dimensional space [12] Hamiltonian with m =0 (m is the
magnetic quantum number), and

W = − h̄2

2m∗

[(
β

r
+

1

h

∂h

∂r

)
∂

∂r
+

1

r2

(
β cot θ +

1

h

∂h

∂θ

)
∂

∂θ

]
(2.5)

where β = 3 − D, h = f 2(r cos θ + zi) for QWs and h = f 2(ρ) for QWWs (with ρ =
r sin θ ), and co-ordinates are taken with the origin at the impurity position. Following previous
works [16–18], one finds that, for a given state, the ‘shallow donor and heterostructure’
anisotropic system may be modelled by an effective isotropic hydrogenic system in a fractional
D-dimensional space, a problem which may be solved analytically, with the D parameter
chosen via the condition∫ ∞

0

∫ π

0
hr2 sin θ φ∗

EWφj dθ dr = 0 (2.6)

where the operator W in (2.5) includes the effects of anisotropy. In the above equation, φE(r)
is the corresponding impurity eigenfunction, and φj and Ej are the exact eigenfunctions and
eigenvalues of the D-dimensional Hamiltonian. If one is concerned with the ground-state
donor binding energy, it follows [12–15] that

Eb = −E1s = 4R0

(D − 1)2
(2.7)

whereR0 = m∗e4

2ε2h̄2 is the donor reduced Rydberg. As shown in appendix A, if the ground-state

wave function is approximated by φ∗
E,1s = e−λr with λ = 2/[a0(D − 1)], the fractional-

dimensional parameter may be given by

D = 1 + 2

√
aI

a0
(2.8)

where a0 = h̄2ε
m∗e2 is the reduced Bohr radius, and we have followed Rossi et al [19] and Zhang

and Mascarenhas [20] and defined a quantum-confined impurity Bohr radius as

aI = 〈ψE,1s|1

r
|ψE,1s〉−1 (2.9)

with co-ordinates taken with the origin at the impurity position. From (2.7)–(2.9), one obtains
the hyperbolic dependence of the donor binding energy on the impurity Bohr radius

Eb = R0

(
a0

aI

)
= e2

2εaI
. (2.10)

Notice that (2.8) provides a simple relation between the fractional dimension of the
effective isotropic medium and the localization of the ground-state wave function through the
donor Bohr radius (2.9). Also, it is straightforward to demonstrate that (2.8) and (2.9) give
the exact results corresponding to the two- and three-dimensional limits.

The above (2.10) result should be compared with (see appendix B)

Eb = −〈Vc〉
(

1 +
〈t̂〉
〈Vc〉

)
= e2

εaI

(
1 − 1

β

)
(2.11)

which relates the donor binding energy to the virial theorem value β = −〈Vc〉/〈t̂〉. It is clear,
therefore, that one finds a virial theorem value of β = 2 within the fractional-dimensional
space approach, for donors either in QWs or QWWs.

Alternatively, in the variational procedure, one may introduce a variational function for
the donor φE(r) envelope wave function, and minimize the impurity energy with respect to the
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variational parameters [2–11]. Although one may choose a two- or three-parameter hydrogenic
variational wave function [3–5] for a shallow donor in a QW, the comparison between results
using the fractional-dimensional space approach and the variational scheme is probably best
illustrated with the simplest one-parameter hydrogenic choice [8] for the variational wave
function. We choose, therefore, φE(r) = φ1s(r) = e−λr for the ground-state wave function,
where λ is a variational parameter, and write

Eb(λ) = e2

εaI(λ)
− h̄

2λ2

2m∗ = e2

εaI(λ)

(
1 − 1

β(λ)

)
. (2.12)

By imposing the condition ∂Eb(λ)
∂λ

= 0, one obtains the following trancendental equation
for λ

λ = 2

aI

( 〈r〉
a0

− aI

a0

)
(2.13)

with

Eb = e2

εaI

(
1 − 1

β

)
(2.14)

and

β =
aI
a0

2
[ 〈r〉
a0

− aI
a0

]2 (2.15)

where the quantities in (2.14) and (2.15) are now evaluated at the values of λ given by (2.13).
Notice that, in the absence of a barrier-confining potential and if one evaluates the above
expectation values for the exact D-dimensional wave function, one recovers the fractional-

dimensional results λ = 2
a0(D−1) and D = 1 + 2

√
aI
a0

(cf equation (2.8)), as expected.

3. Results and discussion

In the following, we have used a GaAs conduction-band effective mass m∗ = 0.0665 m0,
where m0 is the free-electron mass, and a 60% (40%) rule for the conduction (valence) barrier
potential with respect to the total band-gap offset, with the band-gap discontinuity taken as
 Eg (eV) = 1.247 x, where x is the Al concentration. Results are presented with energies
and lengths expressed in units of the impurity reduced Rydberg (R0) and reduced Bohr radius
(a0), respectively.

In figure 1(a) we compare the theoretical fractional-dimensional calculations of the
binding energies for on-centre donors in GaAs/Ga0.7Al0.3As QWs with the corresponding
results using a variational 1s-like hydrogenic envelope wave function [8]. Results are also
shown for an infinite-barrier potential. Notice that the on-centre donor binding energies of both
fractional-dimensional and variational calculations are in excellent agreement. Although not
shown here, the fractional dimension goes from two to three, for an infinite-barrier potential,
as the well width goes from 0 to ∞, and the binding energy varies from 4 R0 to 1 R0,
respectively, as expected (see figure 1(a)). For finite-barrier potentials one finds that the
fractional dimension (not shown here) goes to three as the well width goes to zero, because the
donor wave function becomes essentially immersed in the Ga1−xAlxAs layer and, as expected,
the fractional dimension has the limiting value of three as the well width increases, as the
QW approaches the bulk limit. The fractional-dimensional and variational results for the
quantum-confined donor Bohr radii (see equation (2.9)) are shown in figure 1(b) as functions
of the well width in GaAs/Ga1−xAlxAs QWs, both for x = 0.30 and infinite-barrier potentials.
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Figure 1. On-centre donor binding energies (a) and corresponding quantum-confined donor Bohr
radii (b) as functions of the well width in GaAs/Ga1−xAlxAs QWs, both for x = 0.30 and infinite-
barrier potentials. Solid curves correspond to fractional-dimensional results whereas dotted lines
are calculated using a variational procedure. Energies and well widths are expressed in units of
the impurity reduced Rydberg (R0) and reduced Bohr radius (a0), respectively.

0.0 0.5 1.0
1

2

3

0.0 0.5 1.0
0

1

2

3

4

 FD

 V(b)

 

vi
ri

al
 t

h
eo

re
m

 v
al

u
e

 Bohr radius (a
0
)

 V

 FD

(a)

 on-center donor

E
b (

R
0
)

 Bohr radius (a
0
)

Figure 2. On-centre donor binding energies (a) and virial theorem value (b) as functions of the
quantum-confined donor Bohr radius in GaAs/Ga1−xAlxAs QWs, both for x = 0.30 (full curves)
and infinite-barrier potentials, with calculations within the variational (V) or fractional-dimensional
(FD) approaches. In the cases of infinite-barrier potentials, the dotted (dashed) curve is for results
using the variational (fractional-dimensional) approach. Open dots correspond to exact results.

Notice that, for a given QW width, the variational procedure leads to larger donor Bohr radii
in comparison with the fractional-dimensional results, although, as noticed before, the two
approaches give essentially the same results for the donor binding energy as function of the
well width.

Figure 2 shows the on-centre donor binding energy and corresponding virial theorem
value β = −〈Vc〉/〈t̂〉 versus the quantum-confined donor Bohr radius, calculated in the
variational [8] and fractional-dimensional approaches, for GaAs/Ga1−xAlxAs QWs, both for
x = 0.30 and infinite-barrier potentials. We notice that the fractional-dimensional approach,
in the approximation outlined in appendix A, leads to the hyperbolic dependence of the donor
binding energy on the impurity Bohr radius, and to a virial theorem value of β = 2. In
contrast, within the variational procedure, the virial theorem value has a strong dependence on



9476 M de Dios-Leyva and L E Oliveira

0 1 2 3 4
0

2

4

6

0 1 2 3 4
0.0

0.5

1.0

R/a
0

 

(a)

on-axis donor

E
b/R

0

 

(b)

B
o

h
r 

ra
d

iu
s 

(a
0)

R/a
0

Figure 3. On-axis donor binding energies (a) and corresponding quantum-confined donor Bohr
radii (b) as functions of the wire radius in GaAs/Ga1−xAlxAs cylindrical QWWs, both for x = 0.30
and infinite-barrier potentials. Solid curves correspond to fractional-dimensional results whereas
dotted lines are calculated using a variational procedure. Energies and wire radii are expressed in
units of the impurity reduced Rydberg (R0) and reduced Bohr radius (a0), respectively.

the donor Bohr radius, and approaches the exact bulk value of two from above as the width of
the well approaches infinite, both in the case of infinite-confining and finite-barrier potentials.
One should point out that variational results for finite barriers may exhibit two different virial
theorem values for a given donor Bohr radius, which may be understood by the results in
figure 1(b), as a given Bohr radius corresponds to two well widths. In the case of an infinite-
potential barrier in the variational scheme, the virial theorem value also approaches the exact
two-dimensional value of two for vanishing QW width. The above variational results for the
virial theorem value in the case of shallow donors in QWs are quite similar to the results for
excitons reported by Zhang and Mascarenhas [20].

The fractional-dimensional and variational results [11] for the binding energies of donors
at the axis of a cylindrical GaAs/Ga1−xAlxAs wire are presented in figure 3(a). We notice
that, for infinite-barrier potentials, the fractional dimension (not shown here) goes from one to
three as the wire radius goes from zero to infinite, and the donor binding energy varies from
infinite (the 1s state has infinite binding energy in a strictly one-dimensional hydrogenic system
[22, 23]) to a bulk-like 1 R0, respectively, as one would expect. A decrease of the barrier
potential (or decrease of the Al concentration) leads to a smaller donor binding energy, with
the fractional dimension reducing to about two with decreasing wire radius and then going up
to three when the radius size reaches some critical value with the donor wave function leaking
into the barrier Ga1−xAlxAs material. A comparison between fractional-dimensional results
and a donor variational [11] calculation indicates good agreement for the binding energies in
the cases of moderate and large values of the wire radius. Results for the quantum-confined
donor Bohr radii are shown in figure 3(b) as functions of the wire radii in GaAs/Ga1−xAlxAs
QWWs, both for x = 0.30 and infinite-barrier potentials. As in the QW case, the variational
procedure leads to larger donor Bohr radii in comparison with the fractional-dimensional
results.

The on-axis donor binding energy and virial theorem value are shown in figure 4 versus the
quantum-confined donor Bohr radius, calculated in the variational and fractional-dimensional
approaches, for both x = 0.30 and infinite-barrier potential GaAs/Ga1−xAlxAs QWWs. As
before, the fractional-dimensional approach leads approximately (see appendices A and B and
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Figure 4. On-axis donor binding energies (a) and virial theorem value (b) as functions of the
quantum-confined donor Bohr radius in GaAs/Ga1−xAlxAs QWWs, both for x = 0.30 (full
curves) and infinite-barrier potentials, with calculations within the variational (V) or fractional-
dimensional (FD) approaches. In the cases of infinite-barrier potentials, the dotted (dashed) curve
is for results using the variational (fractional-dimensional) approach.

equations (2.10) and (2.11)) to the hyperbolic dependence of the impurity binding energy on
the donor Bohr radius, and to a virial theorem value of β = 2. As in the work on excitons
by Zhang and Mascarenhas [20], the virial theorem value, obtained within the variational
procedure, has a significant dependence on the donor Bohr radius, and approaches the exact
bulk value of two from above as the radius of the well approaches infinite, both in the case
of infinite-confining and finite-barrier potentials, similar to the results for donors in QWs in
figure 2. Also, in the case of infinite potential in the variational scheme, the virial theorem
value approaches the exact [20] one-dimensional value of two for a vanishing QWW radius.

4. Conclusions

We have presented a detailed study, within the fractional-dimensional and variational
approaches, of the virial theorem value and results for the scaling of the shallow-donor
binding energies versus donor Bohr radius in GaAs/(Ga,Al)As QW and QWW quantum-sized
semiconductor heterostructures. In the case of the fractional-dimensional space approach, we
have analytically demonstrated that if the three-dimensional actual anisotropic semiconductor
heterostructure may be substituted by a fractional-dimensional effective medium with a
ground-state wave function given approximately by φ∗

E,1s = e−λr with λ = 2/[a0(D−1)], the
virial theorem value equals 2 and the scaling rule for the donor binding energy versus Bohr
radius is hyperbolic, both for GaAs–(Ga,Al)As QWs and QWWs. In contrast, calculations
within the variational scheme unambiguously show that the scaling of the donor binding
energies with Bohr radius is, in general, nonhyperbolic and that the virial theorem value
is nonconstant. Moreover, calculations for the donor binding energies versus QW widths
or QWW radii, within both the fractional-dimensional and variational approaches, result in
essentially the same binding energies with quite different virial theorem values or Bohr radii.
This indicates that any general conclusion based on a given virial theorem value or donor
energy versus Bohr radius scaling rule should be examined with due caution.
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Appendix A

The fractional-dimensional parameter D may be obtained through equation (2.6),∫ ∞

0

∫ π

0
hr2 sin θ φ∗

EWφj dθ dr = 0 (A.1)

which is a transcendental equation for D, by choosing φj as the ground-state solution of the

D-dimensional problem, i.e., φj=0 = e−λr with λ = 2/[a0(D − 1)], where a0 = h̄2ε
m∗e2 is the

reduced Bohr radius. One obtains, by using (2.5) for the W operator,∫ ∞

0

∫ π

0
hr2 sin θφ∗

E,1s

(
β

r
+

1

h

∂h

∂r

)
e−λr dθ dr = 0 (A.2)

where we are now concerned with the 1s-like ground-state eigensolution of (2.1). After some
tedious although straightforward transformations, one obtains

(β − 2)
∫ ∞

0

∫ π

0
r2 sin θ

(
h

r

)
φ∗

E,1se
−λr dθ dr

+
∫ ∞

0

∫ π

0
r2 sin θhe−λr

(
λφ∗

E,1s − ∂φ∗
E,1s

∂r

)
dθ dr = 0 (A.3)

which, in the effective-mass approximation, is an exact equation for determining the D
parameter associated with the fractional-dimensional effective isotropic environment. As
the exact φE,1s(r) 1s-like wave function is not known, we assume that the approximation
φ∗

E,1s ≈ e−λr would be valid, provided the anisotropy of the actual semiconductor system is
not too strong, and obtain

D = 1 + 2

√
aI

a0
(A.4)

where we have defined a quantum-confined impurity Bohr radius as [19, 20]

aI = 〈ψE,1s|1

r
|ψE,1s〉−1 (A.5)

with co-ordinates taken with the origin at the impurity position.

Appendix B

The potential energy in (2.1) may be written as the sum of the Vc Coulomb potential and the
Vb barrier potential, i.e., V = Vc +Vb. The generalized virial theorem allows one to write [21]

2〈T̂ 〉 = −〈Vc〉 + 〈r ·∇Vb〉 (B.1)

where T̂ is the kinetic-energy operator. The donor state energy E is then given by

E = 〈T̂ 〉 + 〈Vb〉 + 〈Vc〉 = 1
2 〈Vc〉 + 〈Vb〉 + 1

2 〈r ·∇Vb〉 (B.2)

and the binding energyEb = εc−E, where εc is the energy of the bottom of the first conduction
subband, may be written as

Eb = − 1
2 〈Vc〉

[
1 − εc − 〈Vb〉 − 1

2 〈r · ∇Vb〉
1
2 〈Vc〉

]
. (B.3)
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Alternatively, one may write the eigenfunction of (2.1) as ψE(r) = f (r)φE(r) (cf (2.2)),
and obtain

〈T̂ 〉 = εc + 〈t̂〉 − 〈Vb〉 (B.4)

〈t̂〉 = − h̄2

2m∗

∫
d3rhφ∗

E

(
∇2φE +

∇h
h

· ∇φE

)
(B.5)

and, therefore,

E = εc + 〈t̂〉 + 〈Vc〉 (B.6)

Eb = −〈Vc〉
(

1 +
〈t̂〉
〈Vc〉

)
= e2

εaI

(
1 − 1

β

)
(B.7)

which relates the donor binding energy to the quantum-confined impurity Bohr radius
(cf (A.5)) and to the virial theorem value β = −〈Vc〉/〈t̂〉.
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